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Abstract

In this paper, we consider a three-dimensional inverse heat conduction problem (IHCP) in a falling film experiment.
The wavy film is heated electrically by a thin constantan foil and the temperature on the back side of this foil is mea-
sured by high resolution infrared (IR) thermography. The transient heat flux at the inaccessible film side of the foil is
determined from the IR data and the electrical heating power. The IHCP is formulated as a mathematical optimization
problem, which is solved with the conjugate gradient method. In each step of the iterative process two direct transient
heat conduction problems must be solved. We apply a one step h-method and piecewise linear finite elements on a tet-
rahedral grid for the time and space discretization, respectively. The resulting large sparse system of equations is solved
with a preconditioned Krylov subspace method. We give results of simulated experiments, which illustrate the perfor-
mance and tuning of the solution method, and finally present the estimation results from temperature measurements
obtained during falling film experiments.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The modeling of kinetic phenomena in multiphase
systems leads to problems of model structure and
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parameter identification, which belong to the class of
inverse problems [18]. Challenging inverse problems
appear in the study of heat and mass transfer mecha-
nisms in falling films, which are of special interest, due
to their technical relevance in industry.

Many investigations have already been performed to
analyze the heat and mass transfer in falling films
[10,11,15,17]. It has been observed that both, heat and
mass transfer in wavy films are significantly higher than
ed.
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Fig. 1. Schematic representation of the falling film experiment.

Nomenclature

Direct problems

X 3D heating foil
C1, C2 back and film side of X
Cr remaining boundary of X
n outer normal on oX
T (continuous) temperature distribution
T0 initial temperature distribution
Tm measurement data
qh heat flux modeling electrical heating
qc unknown surface heat flux
t0, tf initial and final times
tb time backwards
q, c, k density, specific heat and heat conductivity
a thermal diffusivity
w adjoint problem solution
S sensitivity problem solution

Optimization

kÆkL2
residual norm

(Æ,Æ) L2(X) scalar product
J objective functional
$J gradient of the objective functional
pn descent direction (nth iteration)

cn conjugate coefficient (nth iteration)
ln step length in search direction (nth iteration)

Discretization

H1(X) Sobolev space
V, Vh function and finite element space
a, b functionals in the weak formulation
{ui}1 6 i 6 N standard nodal basis of Vh

Th, T k
h semi-discrete and fully discrete temperatures

T triangulation of X
h implicitness parameter
s time step size
M, A mass and stiffness matrices

Simulation examples

nt number of time steps applied
nopt number of optimization steps applied
qexc given exact heat flux
T ex
m generated measurement data

� threshold parameter
x, r measurement error and standard deviation
A1 surface of C1

j regularization parameter
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those predicted by the Nusselt solution. In these studies
semi-empirical correlations of the heat and mass transfer
enhancement have been presented, however, the mecha-
nisms of the transport processes and the flow character-
istics of wavy films have not been fully explained.

In this paper, we focus on the heat transfer in falling
films. It is influenced by the film thickness and the wave
structure. In the substrate region, heat transfer is domi-
nated by conduction, whereas in the in wave region, the
heat is transferred by convection, too. To analyze the
influence of the wave characteristics of thin films on
the heat transfer, measurements were carried out in a
falling film apparatus specifically designed for this pur-
pose. Fig. 1 shows the schematic representation of the
experiment used in this research. It consists of a fluid
cycle with a loudspeaker to produce 2D-waves with a
certain frequency. The laminar wavy falling film travels
along one side of a thin foil heated electrically via a
DC power supply. To take temperature measurements
on the foil back side with high resolution in space and
time, we use an infrared camera CEDIP Jade II [1,14].
It has a HgCdTe focal-plane-array with a resolution of
320 · 240 pixel and is sensitive to radiation in the long
wavelength range between 7.7 and 9.5 lm.

The identification problem of estimating the heat flux
on the film surface is coupled with the fluid dynamics of
the falling film. This coupling results in an inverse prob-
lem of very high complexity. In this paper, a simplified,
but still challenging and interesting problem is consid-
ered, where the heat transfer is decoupled from the fluid
dynamics. We investigate the unsteady heat transfer
from the heating foil to the falling film.
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Temperature measurements are used to estimate the
heat flux on the film side of the foil as a function of space
and time with the remaining initial and boundary condi-
tions assumed to be known. This is a model-free estima-
tion problem, since no further assumptions on the heat
transfer mechanism are made. In subsequent steps the
estimated heat flux can be correlated with other quanti-
ties in the falling film such as the mean film temperature
and the flow regime to obtain a better understanding of
the related kinetic phenomena. The goal is not only the
solution of this particular inverse heat transfer problem,
but also to gain a better understanding of solution meth-
ods for multidimensional non-linear inverse problems in
multiphase flow systems. Such an understanding is
essential as a basis for future investigations of more
complex inverse transport problems such as heat trans-
fer through the falling film, mass transfer from the film
to the gas phase, or reaction inside the film.

The inverse heat conduction problem considered con-
sists of determining the heat flux qc(x, t) on the film side
of the foil C2 from measurement data Tm, which are
taken on the foil back side C1. These measurements
are clearly influenced by the transport phenomena in
the falling film and by the surface wave pattern. Fig. 2
shows the schematic representation of the three-dimen-
sional plate X � R3 with heat transfer on C2. There are
two alternatives for modeling the electrical heating at
the back side of the thin constantan foil. We could con-
sider a volumetric source term in the heat conduction
equations or—as done in this paper—we could assume
that we have a constant boundary heat flux on C1 as
shown in Fig. 2.

Many studies related to IHCPs have already been
published (cf. [2,5] and the references therein). Most lit-
erature on numerical solution methods is restricted to
one or two space dimensions. For problems in three
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Fig. 2. Schematic representation of the 3D heating foil.
space dimensions only few publications are available
[6,12,23]. In these papers only simulated data with few
point-wise measurement locations have been used. Re-
cently, an efficient method for the solution of transient
3D IHCPs has been published and applied to experimen-
tal investigations of pool boiling [16]. In contrast to this
filter-based method of limited space–time resolution, we
investigate in this work an optimization-based solution
of the 3D IHCP for the reconstruction of boundary heat
fluxes with high resolution in space and time employing
high resolution spatio–temporal temperature measure-
ments. Although the problem geometry is simple, there
is a numerical complication caused by the plate thick-
ness (25 lm), which is very small compared to its other
dimensions. Due to this geometric anisotropy one has
to be careful in the choice of the solution methods for
the direct problems.

The paper is organized as follows. The inverse prob-
lem is formulated as an optimization problem in Section
2. In Section 3, the solution method based on conjugate
gradients (CG) is introduced. The solution methods for
the direct problems occuring in the optimization proce-
dure are discussed in Section 4. Some test examples for
the validation of the IHCP solver are presented in Sec-
tion 5, while results employing experimental measure-
ment data are given in Section 6. Section 7 contains
some conclusions and remarks concerning future work.
2. Formulation of the inverse problem

We consider the domain X shown in Fig. 2 with
boundary oX = C1 [ C2 [ Cr, where C1, C2 and Cr de-
note the measurement side, the film side and the remain-
ing boundaries of the heating foil. The direct problem

consists of the following heat conduction equation for
the temperature T

oT
ot

ðx; tÞ ¼ aDT ðx; tÞ; ðx; tÞ 2 X � ½t0; tf 
; ð1Þ

T ðx; t0Þ ¼ T 0ðxÞ; x 2 X; ð2Þ

� k
oT
on

ðx; tÞ ¼ qhðx; tÞ; ðx; tÞ 2 C1 � ½t0; tf 
; ð3Þ

� k
oT
on

ðx; tÞ ¼ qcðx; tÞ; ðx; tÞ 2 C2 � ½t0; tf 
; ð4Þ

where T0, qh and qc are the initial and boundary condi-
tions, respectively. The outer normal on the boundary is
denoted by n. The initial and final times are denoted by
t0 and tf, respectively. The known material properties
density q, specific heat capacity c and heat conductivity
k enter the thermal diffusivity a ¼ k

qc, which is assumed
to be constant, since the experimental temperature range
is very small. In this paper, the boundary conditions,
which are not given explicitly, are assumed to be zero,
i.e. �k oT

on ðx; tÞ ¼ 0; ðx; tÞ 2 Cr.



Fig. 3. CG method—iterative procedure.
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The inverse problem corresponds to the estimation of
the heat flux qc on C2 on the basis of suitable measure-
ment data Tm on C1, under the assumption that the val-
ues of T0 and qh are known. This is a typical example of
an inverse heat conduction problem.

In this work we consider an optimization-based for-
mulation, since it can easily be adapted to more complex
situations. The unknown quantity qc is determined such
that

JðqcÞ :¼
1

2
kT ðx; t; qcÞjC1

� Tmðx; tÞk2L2 ! min

s.t. Eqs. (1)–(4). ð5Þ

To emphasize the dependence of T on the boundary heat
flux qc we refer to the solution of (1)–(4) as T(x, t;qc).
The corresponding norm in (5) is defined by

k � k2L2 :¼
Z tf

t0

Z
C1

ð�Þ2 dxdt. ð6Þ

Regularization [7] is only introduced via the discretiza-
tion and suitable stopping criteria for the optimization
algorithm. This strategy is discussed below in more de-
tail. An alternative approach is to add a regularizing
term R(qc) to the objective function J, which penalizes
the variation of qc. This method will be considered in
future work.
3. Minimization algorithm

For the solution of the least squares problem (5)
many methods are available [2,3,7]. Here, we use the
conjugate gradient (CG) method (see [7,20] for details),
which is very efficient in terms of the number of itera-
tions compared to other semi-iterative methods, if the
discrepancy principle is chosen as a stopping rule [7].
For non-linear problems, some variants of this algo-
rithm are available in the literature [20].

The CG method solves the minimization problem by
setting up an iteration sequence for the unknown func-
tion qc (see Fig. 3). Here, the solution at iteration n is up-
dated from the previous one until some stopping
conditions are fulfilled. For the determination of the
search direction the conjugate gradient method is used,
which requires the gradient of the functional (5) to com-
pute the search direction. The gradient is defined as the
first order Fréchet derivative of the functional at some
point qc 2 W, where W is a suitable function space.
We consider the space W of continuous and piecewise
linear functions on C2 which is due to the discretization
of the domain X with P1-elements on a tetrahedral grid.
If the functional increment at some point qc is given by

Jðqc þ dqcÞ � JðqcÞ ¼
Z tf

t0

Z
C2

rJðx; tÞdqcðx; tÞdxdt

þ oðkdqckÞ ð7Þ
with qc + dqc 2 W, then the function $J(x, t) is the func-

tional gradient at qc.
The CG procedure, illustrated in Fig. 3, comprises

the following calculation steps:

(i) Set n = 0 and choose a starting value q0c 2 W , e.g.
q0c � 0.

(ii) Calculate the objective function. If the conver-
gence conditions are satisfied stop, otherwise
continue.

(iii) Calculate the new search direction pn ¼ rJðqncÞþ
cnpn�1. The gradient rJðqncÞ is obtained from the
solution of the adjoint problem (cf. Section 3.1).
The conjugate coefficient cn, n P 1, is determined
from
cn ¼
R tf
t0

R
C2
½rJðqncÞ


2 dxdtR tf
t0

R
C2
½rJðqn�1c Þ
2 dxdt

ð8Þ

and c0 = 0.

(iv) Calculate the step length along the search direc-

tion by solving the one-dimensional optimization
problem
ln ¼ argminlP0Jðqnc � lpnÞ. ð9Þ

In our case ln is given by

ln ¼
R tf
t0

R
C1
½T ðx; t; qncÞ � Tmðx; tÞ
Sðx; tÞdxdtR tf

t0

R
C1
½Sðx; tÞ
2 dxdt

;

ð10Þ

with S being the solution of the sensitivity problem

(cf. Section 3.2).

(v) Update the approximation
qnþ1c ¼ qnc � lnpn. ð11Þ

Increase n by one and go back to (ii).
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Two difficulties arise in applying this solution ap-
proach. First we have to calculate the functional gradi-
ent and second we have to solve the optimization
problem in (9) to find a step length along the descent
direction. In the next section we discuss these two issues.

3.1. Adjoint problem

In the iterative gradient-based procedure, we need
the gradient $J(x, t) to calculate the descent direction
pn. It can be shown that the identity

rJðx; tÞ ¼ wðx; tÞjC2
ð12Þ

holds, where the adjoint variable w is the solution of the
adjoint problem

ow
ot

ðx; tÞ ¼ �aDwðx; tÞ; ðx; tÞ 2 X � ½t0; tf 
; ð13Þ

wðx; tfÞ ¼ 0; x 2 X; ð14Þ

� k
ow
on

ðx; tÞ ¼ ½T ðx; t; qcÞ � Tmðx; tÞ
;

ðx; tÞ 2 C1 � ½t0; tf 
; ð15Þ

� k
ow
on

ðx; tÞ ¼ 0; ðx; tÞ 2 C2 � ½t0; tf 
. ð16Þ

We do not give a derivation of the identity in (12) since it
follows from standard procedures [2]. For the adjoint
problem, there is no initial condition, but rather a con-
dition at final time tf. By introducing a new time variable
tb = tf � t, we get an equation system which has the
same structure as the original direct problem (1)–(4),
however, with different initial and boundary conditions.

3.2. Sensitivity problem

The step length ln along the search direction pn is ob-
tained from the solution of the sensitivity problem given
by

oS
ot

ðx; tÞ ¼ aDSðx; tÞ; ðx; tÞ 2 X � ½t0; tf 
; ð17Þ

Sðx; t0Þ ¼ 0; x 2 X; ð18Þ

� k
oS
on

ðx; tÞ ¼ 0; ðx; tÞ 2 C1 � ½t0; tf 
; ð19Þ

� k
oS
on

ðx; tÞ ¼ pnðx; tÞ; ðx; tÞ 2 C2 � ½t0; tf 
. ð20Þ

Again, it has the same structure as the direct prob-
lem (1)–(4), but with different initial and boundary
conditions.

In the iterative process, three direct heat conduction
problems, the direct, adjoint and sensitivity problems,
have to be solved. To calculate the corresponding solu-
tions the same software code can be used, since all of
the mentioned problems have the same structure. In
many publications on the CG method, the three direct
problems are solved at each iteration. Actually, in the
particular case of linear problems only the solutions of
two direct problems are needed in each optimization iter-
ation (see Fig. 3). In fact, using the linearity, the temper-
ature can be computed from the identity

T ðqnþ1c Þ ¼ T ðqncÞ � lnS; ð21Þ

where S is the solution of the sensitivity problem (17)–
(20). So the direct problem (1)–(4) is solved only once
at the very beginning (i.e. n = 0). This results in a sub-
stantial reduction of the computational time.
4. Solution of the direct problems

The solution of the direct 3D heat conduction equa-
tions is computed using the software package DROPS
(cf. [8]), which is based on multilevel nested grids and fi-
nite element discretization methods. Some aspects of the
numerical methods implemented in DROPS are briefly
described in this section. For the time discretization, a
standard one step h-method is used [19]. Piecewise linear
finite elements on a tetrahedral grid are employed for the
space discretization [21]. The resulting discrete systems
of equations are solved with a preconditioned Krylov
subspace method.

We outline the finite element method that is used for
the space discretization. It is based on a variational for-
mulation of the direct problem: For t 2 [t0, tf] find
T(t) 2 V such that

oT ðtÞ
ot

; v
� �

þ ðarT ðtÞ;rvÞ ¼ � a
k

Z
oX

qvdr 8v 2 V .

ð22Þ

Here V is a suitable function space (the Sobolev space
H1(X)) and (u,v) :¼ �Xu Æ vdx denotes the L2(X) scalar
product. For notational convenience we introduce the
bilinear form a(u,v) :¼ (a$u,$v) and the functional
b(t;v) which is defined by the right hand side in (22).
The variational problem can be rewritten in compact
form as

oT ðtÞ
ot

; v
� �

þ aðT ðtÞ; vÞ ¼ bðt; vÞ 8v 2 V .

For the discretization we use a triangulation T of X
which consists of tetrahedra. The finite element space
Vh � V consists of continuous piecewise linear func-
tions. The degrees of freedom are located at the vertices
of the tetrahedra. Let {ui}1 6 i 6 N be the standard nodal
basis of the space Vh. The discrete problem is then given
as follows: Find Th 2 Vh such that

oT hðtÞ
ot

;ui

� �
þ aðT hðtÞ;uiÞ ¼ bðt;uiÞ 81 6 i 6 N .

ð23Þ



Fig. 5. Triangulation of the unit cube.
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This is a system of coupled ordinary differential equa-
tions. For the time discretization a one step h-scheme is
applied. The time step size is denoted by s and the
approximate solution at time tk is denoted by T k

h. Then
given T k

h, we get the approximate solution T kþ1
h �

T ðtkþ1; �Þ by solving the problem

ðT kþ1
h ;uiÞ þ hsaðT kþ1

h ;uiÞ

¼ ðT k
h;uiÞ � ð1� hÞsaðT k

h;uiÞ þ hsbðtkþ1;uiÞ

þ ð1� hÞsbðtk ;uiÞ; 81 6 i 6 N . ð24Þ

The parameter 0 6 h 6 1 controls the implicitness of the
scheme. In particular, h = 0 yields the explicit Euler
scheme, h = 1 the implicit Euler scheme and h = 0.5
leads to the Crank–Nicholson scheme. Because of the
strong stiffness of the system in (23) only implicit
schemes (h 5 0) should be used to solve the instationary
heat conduction problems. The implicit Euler scheme is
only first order accurate (i.e. the discretization error is
OðsÞ), but is strongly A-stable. The Crank–Nicholson
scheme is of order two, is A-stable, but does not have
the strong A-stability property, which may lead to sta-
bility problems in certain situations. In the remainder
of this paper we only consider h = 0.5 and h = 1.

Let u 2 RN be the coefficient vector of the representa-
tion of T h ¼

PN
i¼1uiui in the nodal basis. Eq. (24) then

represents a linear system of equations for the unknown
function T kþ1

h , which can be written as

½M þ hsA
ukþ1 ¼ ½M � ð1� hÞsA
uk þ hsbkþ1 þ ð1� hÞsbk .

Here M denotes the mass matrix and A the stiffness
matrix
M ij :¼ ðuj;uiÞ; Aij :¼ aðuj;uiÞ

and bk, bk + 1 are the right hand sides with

bki ¼ bðtk ;uiÞ; bkþ1i ¼ bðtkþ1;uiÞ.

The system matrix M + hsA is symmetric positive
definite, thus a preconditioned conjugate gradient
(PCG) method can be applied to solve this system of
linear equations [22]. For the simulations presented
in this paper we use the SSOR method for precondi-
tioning.



Fig. 6. Triangulation of a geometrical anisotropic domain.
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At the end of this section, we briefly comment on the
performance of the developed solver, because we con-
sider a very thin heating foil. In this context we mention
the properties of the applied triangulation technique and
the arising degenerated tetrahedra (see Fig. 5 and 6). The
standard kind of triangulation used within the software
package DROPS avoids large angles inside the faces as
well as between two faces of each tetrahedron, indepen-
dent of the geometry dimension (for more information
see [8]). Taking into consideration the so-called maxi-

mum angle principle (see [4,13]) we do not expect a loss
of quality with respect to the discretizations of the in-
volved direct heat conduction problems in the case of
increasing anisotropy. This is confirmed by numerical
experiments. However, we expect that the efficiency of
the PCG solver decreases with increasing geometrical
degeneracy, which has been observed in numerical
experiments, too. In this paper, we will not analyze these
observations in more detail.
5. Simulation examples for method and code validation

The DROPS code as well as the optimization method
were validated via various simulations. Some results of
these case studies are given in this section. Results ob-
tained with experimental data are presented in the next
section.

In the following simulations, we applied the implicit
Euler scheme for the time discretization to avoid stabil-
ity problems. However, a comparison with the second
order Crank–Nicholson scheme showed no substantial
differences with respect to the quality of the obtained
heat flux estimations. The material properties chosen
in this section do not reflect the real experimental data
of Section 6 as we focus on method and code validation.

5.1. Example 1: continuous and time varying heat flux

In Examples 1 and 2, we consider the domain
X :¼10 · 40 · 100 mm3. The material properties for
these cases are lumped in the parameter a = 10�4 m2/s.
For the time discretization (implicit Euler scheme) we
use the time step size s = 0.01 s and apply 200 time
steps. The initial and known boundary conditions
consist of a constant temperature distribution T(x, t0) =
20 �C, x 2 X, a constant heat flux qh(x, t) = 2 kW/m2,
(x, t) 2 C1 · [t0, tf] for heat addition and perfectly insu-
lated boundaries on Cr (cf. the notation of Section 2).
For the initialization of the optimization procedure,
we choose q0cðx; tÞ ¼ 0, (x,t) 2 C2 · [t0, tf] (see Fig. 3).

In this first example, a uniform space discretization
with 35,937 unknowns is applied (corresponding to an
initial grid triangulation with 32 · 32 · 32 parallel-
epipeds and 196,608 tetrahedra, for more details cf.
[8]). As a basis of this simulation, we choose a shape
of the heat flux, which represents an intuitive approxi-
mation of the real quantity in the falling film experi-
ment. This heat flux is denoted by qexc ðx; tÞ, (x, t) 2
C2 · [t0, tf] and has a sinusoidal pattern over the space
coordinate in the flow direction of the falling film (i.e.
the z-direction). The wavy pattern is assumed to be time
dependent, such that the waves travel along the z-direc-
tion over time

qexc ðx; y; z; tÞ ¼ sin 4p
z

100
þ t
200

� �� �
;

ðx; y; zÞ 2 C2; t 2 ½t0; tf 
.

5.1.1. Estimation with error-free measurements

First, we present the estimation results of the bound-
ary heat flux with error-free measurements. As measure-
ment data, we take the temperature T ex

m obtained from
the solution of the direct heat conduction problem with
the chosen quantity qexc as the corresponding boundary
condition on C2.

In Fig. 4(a), the objective functional is plotted over
the number of optimization iterations, whereas a snap-
shot (at one point in time) of the estimated heat flux at
the end of the optimization is presented in Fig. 4(b).
We observe the well known convergence behavior of
the applied CGmethod in terms of a more rapid decrease
of the objective functional at the beginning of the itera-
tive process followed by stagnation at a certain level. Plot
(b) shows that the estimated heat flux is, like the exact
quantity, constant in the y-direction. Therefore, we
restrict the following plots to a cut through the y-axis
to look at the estimation quality in more detail.
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Both exact and estimated heat fluxes are given in
Fig. 7 over the z-direction for constant y = 20 mm (i.e.
in the middle of the y-coordinate) and different numbers
of time steps applied, which are denoted by nt. Except
for a region at final time the recovered heat flux is of
high quality, since there are only little visible deviations
compared to the exact quantity. At final time, the esti-
mation quality decreases, due to the fact that the solu-
tion of the adjoint problem (i.e. the gradient of the
objective functional) is zero and therefore causes no
improvement of the start approximation for t = tf. The
effect of the iterative CG method is presented in
Fig. 8. Here the error free and estimated heat fluxes
are shown at the fixed time level nt = 100 and different
iterations of the optimization, which are denoted by nopt.
We clearly observe that the estimation quality increases
with a rising number of optimization steps, since we use
error-free temperature measurements. To stop the itera-
tions, we consider the usual procedure and specify a
small threshold parameter � for the objective function,
i.e.
JðqncÞ < �. ð25Þ
We see from Fig. 4(a) that about 80 iterations are
needed to satisfy the stopping rule (25) with � = 10�6.
Clearly, smaller values of � lead to more iterations.
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5.1.2. Estimation in the presence of measurement errors

In this section, we perturb the exact temperature T ex
m ,

obtained as described in the previous section, using an
artificial measurement error x. We assume the perturbed
temperature Tm given by

Tm ¼ T ex
m þ rx;

with r being the standard deviation of the measurement
error. The values of x are generated from a zero mean
normal distribution with variance one. The parameter
r is used to control the error amount added to the exact
data. In the case of measurement errors, we cannot ex-
pect that the objective functional becomes arbitrarily
small. To find an appropriate � to stop the iterations,
we can use known parameter choice rules from the in-
verse problems literature [7].

The discrepancy principle suggests that we stop the
iterations, when the residual approximately equals r.
From (5), we get the expression

� ¼ 1

2
jðtf � t0ÞA1r

2;

for the threshold parameter � in (25), where A1 is the sur-
face of C1 and j > 1 is a parameter. In the following sim-
ulations we used j = 1.02. A detailed discussion of this
method is given in [7]. For r = 0.25 we obtain the opti-
mal result after nopt = 40 iterations using the stopping
rule above. The estimates and the corresponding temper-
atures are given in Fig. 9. A good reconstruction of the
exact heat flux is achieved. By performing further itera-
tions, the estimated heat flux begins to oscillate and the
estimation quality decreases. Similar results have been
obtained with higher values of the noise level r.
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An alternative stopping criterion is to use heuristic
rules such as the L-curve [9], which is a parameterized
plot of the residual against a solution norm. For
r = 0.25, the L-curve is shown in Fig. 10. The best com-
promise is found at the point of the L-curve with maxi-
mum curvature. For the considered case, the optimal
value is about nopt = 40 iterations, i.e. the result is com-
parable to the one obtained by the discrepancy principle.

5.2. Example 2: discontinuous and steady state

heat flux

In this section, we present a simulation based on a
heat flux qexc that is time independent and discontinuous
0 50 100
44.5

45

45.5

46

46.5

47

47.5

48

z [mm]

T
em

pe
ra

tu
re

 [°
C

]

b)

exact
measured
estimated

a) exact and estimated heat flux qc for nopt = 40 and (b) exact,



Fig. 11. Exact (a) and estimated (b) heat flux.

0 20

(a)

(b)

40 60 80 100
–4

–3

–2

–1

0

1

z [mm]

0 5 10 15 20 25 30 35 40
–4

–3

–2

–1

0

1

y [mm]

H
ea

t f
lu

x 
q c [k

W
/m

2 ]

exact
n

opt
=10

n
opt

=100

n
opt

=300

exact
n

opt
=10

n
opt

=100

n
opt

=300

Fig. 12. 2D plots of the heat fluxes for y = 0 (a) and z = 0 (b) at
different optimization steps nopt.

0 10 20 30 40 50 60 70 80 90 100
28

29

30

31

32

33

34

35

36

37

z [mm]

0 5 10 15 20 25 30 35 40
28

30

32

34

36

y [mm]

T
em

pe
ra

tu
re

 [°
C

]

exact
n

opt
=5

n
opt

=10

n
opt

=100

exact
n

opt
=5

n
opt

=10

n
opt

=100

(a)

(b)

Fig. 13. 2D plots of the temperatures for y = 0 (a) and z = 0 (b)
at different optimization steps nopt.

5558 S. Groß et al. / International Journal of Heat and Mass Transfer 48 (2005) 5549–5562
on C2. Thus this heat flux does not belong to the Sobolev
space H1(X). It has the representation

qexc ðx; y; z; tÞ ¼
0 for ðx; y; zÞ 2 C0;

�3 kW=m2 else;

�

with C0 :¼ {(x,y,z) 2 C2jy 2 [10,30] _ z 2 [20,80]} (see
Fig. 11(a)).

We again consider the situation described in the first
paragraph of Example 1, but this time we use a quasi-
uniform discretization with 36,057 unknowns (corre-
sponding to an initial triangulation with 16 · 20 · 100
parallelepipeds with respect to the space coordinates).
We consider these data with focus on the real falling film
experiment, where we choose a fine space discretization
(resolution) in the flow direction (z-coordinate) and
relatively coarse resolutions in the other directions (see
Section 6).

The obtained estimation result is given in Fig. 11(b).
The objective functional shows the same typical behav-
iour as already described in Example 1 and therefore
we do not give the plot here. Both, exact and estimated
solutions of the inverse problem are given in Fig. 12(a)
and (b) for cuts along the z-axis and the y-axis respec-
tively (y = 0 and z = 0). Again, results for different iter-
ation numbers of the optimization procedure are shown.

Due to the discontinuities of the error free boundary
heat flux, oscillations appear in the piecewise continuous
approximations with an increasing number of optimiza-
tion iterations applied. A comparison of both plots with
100 (a) and 20 (b) unknowns in the corresponding space
directions respectively shows a better approximation
quality for the case with higher space resolution.

The number of unknowns needed to reach the desired
accuracy should be kept as small as possible for efficiency
reasons. Instead of refining the whole grid, it may be bet-
ter to use locally refined grids. Local grid refinement
leads to good approximation properties, while at the
same time the number of unknowns is severely decreased
compared to the global refinement case. The multilevel
refinement algorithm, which is implemented in DROPS,
makes it easy to use such locally refined triangulations.
The solution of the considered IHCP on such grids re-
mains a challenging task for future investigations. In this
context, suitable error estimators have to be developed
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that are based on the spatial behaviour of the unknown
quantity, which is not the solution of the direct problems
(i.e. the temperature distributions) but the corresponding
boundary condition on C2.

The temperature distributions corresponding to the
estimated quantities are shown in Fig. 13(a) and (b) to-
gether with the exact values for different optimization
steps. The plots show that we obtain high proximities
to the exact temperature distributions after only few
optimization iterations in contrast to the corresponding
heat fluxes. This example shows, that the value of the
functional is in general not a good measure for the qual-
ity of the estimation. The fit of the temperatures may be
almost perfect, even though the estimated heat flux is
quite different from the exact one. This largely unavoid-
able effect is due to the ill-posedness of inverse heat con-
duction problems caused by the strong smoothing
properties of the direct problem.
Fig. 14. Measured temperature data.
6. Estimation results with measurement data

In this section, we present an estimation case study
for the real falling film experiment employing the high
resolution temperature measurements. These are taken
with an IR camera on the back side C1 of the constantan
foil, which has a thickness of 25 lm. The main idea be-
hind choosing a very small heating foil consists in reach-
ing a small temperature gradient across the foil
thickness, i.e. the temperatures on both sides of the foil
should be nearly identical. In that case, the measured
data will be a good estimate of the temperature on the
inaccessible film side of the foil. The measurement sec-
tion has the dimension 19.5 · 39 mm2. Hence, we define
the domain X :¼ 0.025 · 19.5 · 39 mm3. Due to this
geometric anisotropy, we have to use degenerated finite
elements (see Section 4).

The measurement data are taken with a sampling fre-
quency of 500 Hz and a space resolution of 100 · 200
pixel. These technical data translate to a time step size
of s = 2 ms in the one step h-scheme and a space discret-
ization of 100 · 200 unknowns in the y–z-plane in the
case of a one by one allocation, i.e. if we consider
the same resolution for the measurement data and the
numerical simulation. For the space discretization in
the x-direction only five unknowns are used, which turns
out to be an appropriate choice. To investigate the effect
of the discretization in x-direction on the temperature
profile, we solved the direct problem for five and nine
unknowns, respectively. As no additional frequencies
appeared using the finer space mesh, we conclude that
already the coarser grid is appropriate for the resolution
of the temperature changes in that direction. Altogether
we get a space discretization with 472,824 tetrahedra.
The final time of the experiment is tf = 0.3 s, which cor-
responds to 150 temperature frames that are taken with
the IR camera in order to observe the influence of some
waves flowing off with the laminar falling film.

The electrical heating generates a constant heat flux
qh(x, t) = 6.4 kW/m2, (x, t) 2 C1 · [t0, tf]. For the initial
approximation, we choose q0cðx; tÞ ¼ qh; ðx; tÞ 2 C2�
½t0; tf 
, because we expect qc and qh to have the same order
of magnitude, due to the very thin heating foil. The other
boundaries of the space domain are assumed to be per-
fectly insulated and the initial temperature distribution
corresponds to the first temperature frame assumed to
be constant across the foil thickness. The material prop-
erties of the foil are

q ¼ 8900 kg=m3; c ¼ 410 J=kgK; k ¼ 23 W=mK

resulting in a thermal diffusivity of a=6.3 · 10�6 m2/s.
In Fig. 14 the measured temperature distribution

over the y–z-plane at a certain point in time is shown.
The plot clearly shows that these data are perturbed
by a large amount of noise. Without going into more
detail here, we mention the measurement preprocessing
applied to the experimental data of the falling film.
The convective heat transport in flow direction causes
a constant rise of the film temperature of approximately
0.05 K/mm, which overlays the local fluctuations caused
by the waves. In order to remove this effect of the con-
vective heat transport in the flow direction, a reference
picture is subtracted from all the temperature frames
taken with the IR camera, which is the reason for the use
of insulated boundary conditions in the flow direction.

A typical observation in the context of inverse prob-
lems deals with the effect of noise in the given input data
with respect to the number of optimization iterations.
Fig. 15 shows the evolution of the corresponding objec-
tive functional, which decreases rapidly in the first itera-
tions and flattens in the following steps. Although the
temperature residual gets smaller, the quality of the cor-
responding estimated heat flux gets worse because of
oscillations that appear with a rising number of optimi-
zation steps. This is an important reason why we have to
investigate suitable regularization methods.
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In Fig. 16, the optimal solution computed on the
basis of measured input data is presented over the given
time interval. Here, the estimated heat flux q15c is plotted
for different time values. The discrepancy principle as
described above has been used as a stopping rule
resulting in nopt = 15 iterations. The estimated standard
deviation of the measurement error is r = 0.02. As a
reference for the quality of the calculated result the mea-
sured temperature and the calculated temperature are
shown as well. The L-curve for this case is shown in
Fig. 17. We see that the optimal estimate is also obtained
after 15 iterations, though the maximum curvature point
is not very much exposed.

Looking at the solution over the time interval we ob-
serve that the estimated heat flux shows a wavy structure
moving along in the flow direction of the falling film (i.e.
the z-direction) with the same frequency as the film
waves. This can be traced back to the influence of the
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wavy film surface whose varying thickness effects the
amount of heat that is transferred from the foil to the
film. The quality of the approximation decreases at
the end of time, since the solution of the adjoint problem
is zero at final time and therefore causes no improve-
ment of the corresponding iterative solution.
7. Conclusions and future work

The conjugate gradient method has successfully been
applied to the 3D transient inverse heat conduction
problem in a falling film experiment to estimate the
boundary heat flux at the film side of the heating foil
from high resolution temperature measurements taken
with an infrared camera at the foil back side. Simulation
studies show that a time-dependent heat flux can be ade-
quately predicted from the measurements within few
iterations of the CG algorithm. The quality of the esti-
mation depends on the level of the measurement error.

Future work will be devoted to the more complex
problem of estimating the heat flux on the wavy surface
of the falling film. For this task, we need to address
momentum equations in addition to the energy equation
including convective terms. The same algorithm can also
be used for this case. Moreover, using the estimation
procedure we can perform an optimal design of the
experimental setup and determine conditions to enhance
the information content of the measurements.
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